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ABSTRACT 

Let R be an associative ring with identity. We s tudy an e lementary 
generalization of the  classical Zariski topology, applied to the  set of iso- 

morphism classes of simple left R-modules (or, more generally, simple 

objects  in a complete abelian category).  Under  this topology the  points  
are closed, and when R is left noether ian the corresponding topological 

space is noetherian.  If R is commutat ive  (or PI, or FBN) the  corre- 

sponding topological space is naturally homeomorphic  to the  maximal  

spectrum,  equipped with the  Zariski topology. When  R is the  first Weyl 

algebra (in characteristic zero) we obtain a one-dimensionM irreducible 

noether ian topological space. Comparisons with topologies induced from 

those on A. L. Rosenberg 's  spectra  are briefly noted.  

1. I n t r o d u c t i o n  

One of the fundamental ideas in noncommutative algebraic geometry (see [10] 

for a recent survey) is that to each noncommutative ring R there corresponds a 

"noncommutative affine space." Ideally, such a space should closely reflect the 

representation theory of R and should follow a construction mimicking the clas- 

sical commutative case. This note, then, is concerned with the "noncommutative 

affine space of irreducible representations of R." 
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Now let R-space denote the set of isomorphism classes of simple R-modules. 

In §2 we equip R-space with the R- topology.  It follows immediately from the 

definition that points (i.e., simple R-modules) are closed in the R-topology, and in 

§3 we prove that the R-topology is noetherian if R is a left noetherian ring. Also, 

if R is commutative (or PI, or FBN) then R-space, equipped with the R-topology, 

is naturally homeomorphic to max R, equipped with the Zariski topology; see §4. 

When R is the first Weyl algebra (in characteristic zero), R-space is a one- 

dimensional, irreducible, noetherian topological space; see (4.3-4). In particular, 

the R-topology can distinguish between Weyl algebras and simple Artinian rings 

(whose corresponding spaces are singletons). 

Following [7] and [12], we actually work in a somewhat more general setting. 

Let A be a complete abelian category, and let A-space denote the collection of 

isomorphism classes of simple objects in A. Assume further that A-space is a 

set. In §2 we define the A-topology on A-space, and in §3 we prove that the 

A-topology is noetherian if A has a noetherian generator. As before, the points 

in A-space are closed. In §5 we provide a brief comparison of the A-topology 

with the topologies developed by A. L. Rosenberg in [7]. Our notion of a closed 

set in A-space is also related to ideas found (e.g.) in [1, 3, 4, 8]; see (2.6). 
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February 2000) during the special year in noncommutative algebra. Finally, I 
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2. A-space 

2.0. PRELIMINARIES. The following notation and assumptions will remain in 

effect throughout this note. The reader is referred (e.g.) to [2, 6, 11] for basic 

background information on rings and categories. 

(i) We will use R to denote an associative ring with identity. We will only use 

"R-module" to mean "left R-module," and the category of R-modules will be 

designated Mod R. 
(ii) We will use A to denote a complete abelian category. Recall that an abelian 

category is complete if and only if it is closed under products [11, IV.8.3]. Our 
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primary motivating exalnples of complete abelian categories are Grothendieck 

categories [11, X.4.4] and ModR. 

(iii) Following [12], we will refer to the objects in A as A-modules ,  and we 

will employ the terminology of modules when appropriate. 

(iv) Let M be an A-module, and let S be a set of submodules of M. Set 

N N = kernel of the natural map M -+ I I  M/N.  
NCS NCS 

Using this definition, the proof of the Schreier Refinement Theorem (cf., e.g., [2, 

3.10]) can be readily adapted to series of A-modules. 

(v) Let A-space denote the collection of isomorphism classes of simple A- 

modules (i.e., simple objects in A). We will assume for the remainder of this 

note that  A-space is a set. We will use R-space  to denote (Mod R)-space. 

(vi) For each p C A-space, let Np denote a chosen representative A-module in 

p. (The topological structure of A-space described below will not depend on these 

choices.) We will use IN] to denote the isomorphism class in A of an A-module 

N. 

2.1. Define a subset X of A-space to be an a lgebra ic  set  if the isomorphism 

class of each simple subquotient of 

IINp 
pEX 

is contained in X. 

2.2. Remark: Suppose that R is commutative. We will see in (4.1) that the al- 

gebraic sets in R-space correspond exactly to the Zariski closed subsets of max R. 

2.3. THEOREM: A-space, with the closed sets defined to be the algebraic sets, 

is a topological space. 

Proof: It is immediately evident that 0 and A-space are algebraic sets. Also, it 

is easy to verify that the intersection of an arbitary collection of algebraic sets 

is an algebraic set. Now suppose that X1 and X2 are algebraic sets, and let 

X = X1 U X2. Then 

n 
p C X  P . i p E X s  \ X~ 

It now follows from the Schreier Refinement Theorem that X is an algebraic set. 
| 
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2.4. For convenience, we will refer to the topology defined in (2.3) as the A- 

topology .  

2.5. For every (two-sided) ideal [ of R, let 

v(I) = {p E R-space: I C ann Np}. 

(i) Generalizing the well-known terminology for primitive ideals, define the 

J a c o b s o n  topo logy  on the set R-space to be the topology in which the v(I) 
are the closed sets. It is easy to see that the R-topology is a refinement of 

the Jacobson topology. When R is commutative, we will refer to the Jacobson 

topology as the Zariski  topology.  

(ii) Let prim R denote the (left) primitive spectrum of R, equipped with the 

usual Jacobson topology. When both R-space and prim R are equipped with the 

Jacobson topology, the map 

p~-~ ann Np 
~: R-space • prim R 

is a closed and continuous surjection. With respect to the R-topology on R-space 

and the Jacobson topology on prim R, it follows from (i) that u is continuous. 

When R is commutative, 7c is a continuous bijection from R-space onto max R 

(equipped with the classical Zariski topology); bicontinuity in this case will follow 

from (4.1). 

2.6. Remarks: (i) In [1], a full subcategory of an abelian category is called 
"closed" when it is closed under direct limits and subquotients; in [8] such sub- 

categories are termed "weakly closed." 
(ii) The notion of algebraic set presented in (2.1) is also similar to ideas devel- 

oped in [3, 4]. 

3. Noetherianity 

Recall the notation of (2.0). Assume in this section that A-space is equipped 

with the A-topology and that R-space is equipped with the R-topology. 

3.1. (i) For each A-module M, let S(M) denote the set of isomorphism classes 

of simple subquotients of M, and let V(M) denote the closure of S(M) in A- 

space. 
(ii) For each dosed subset X of A-space, let 

i ( X )  : H Np. 
pEX 
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Of course, M ( X )  is determined up to isomorphism only by the closed set X and 

not by the choices of Np for p E X. It  follows from the definitions, since X is 

closed, that  S ( M ( X ) )  = V ( M ( X ) )  = X .  

(iii) If  M is an A-module we will refer to M ( V ( M ) )  as the r ad i ca l  of M, 

denoted V ~ .  It  again follows from the definitions that  

= v /M and V ( M )  = V(v/-M). 

3.2. LEMMA: Let X be a closed subset of A-space, and let M = M ( X ) .  Assume 

there exists an A-module E with the following property: For each p E X there is 

an epimorphism gp: E -+ N~. Let g: E --+ M ( X )  denote the product morphism, 

and let F denote the image of g in M ( X ) .  Then S (F)  = V(F)  = X ,  and 

v/P ~ M. 

Proof: First, S(F)  C_ V (F)  C V ( M )  = X ,  since F is a submodule of M. On 

the other hand, if p C X then Np is isomorphic to a subquotient of F.  Hence 

X C_ S(F) .  Therefore, X = S(F) ,  and V ~  TM M. | 

3.3. THEOREM: Assume there exists a noetherian A-module E that maps epi- 

morphically onto each simple A-module. Then A-space is a noetherian topological 

space. 

Proof: Let 

X = X1 _D X2 _D X3 _D . . .  

be a descending chain of closed subsets of A-space. 

For every p E X,  choose an epimorphism gp: E --+ Np. For all i = 1, 2, 3 . . . . .  

let 

E - ~  1-[ G = M(X~) 
pEXi 

be the product map, and let M~ denote the image of gi in M(Xi ) .  Observe that  

there is an epimorphism 

Mi -+ Mi+l, 

for each i = 1, 2 . . . . .  However, since M1 is noetherian, there exists some positive 

integer t for which 

M t  '~ /~ft+1 ~ ' " .  

Therefore, by (3.2), 

The theorem follows. | 

X t = X t +  1 . . . .  
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3.4. COROLLARY: IrA possesses a noetherian generator then A-space is noethe- 

r/an, and if R is left noetherian then R-space is noetherian. 

3.5. Assume that  A-space is noetherian. Recalling the standard elementary 

notions of algebraic geometry, we see that  every algebraic subset is a finite union 

of irreducible components. Moreover, we can define the dimension of an algebraic 

subset to be the supremum of the lengths of the chains of its irreducible subsets. 

3.6. (My thanks to Paul Smith for the following remark; cf. [9, §7].) We can 

see as follows that  V ( M )  may be strictly larger than S(M) .  Let k be a field, let 

E k be a nonzero nonroot of unity, and assume that  R = k{x, y } / ( xy  - Ayx). 

We can regard the colnmutative polynomial ring k[x] either as a subalgebra of R 

or as an R-module on which y acts trivially and x acts by left multiplication. For 

# e k, set K(p)  = R/ (y ,  x - #), viewed as a 1-dimensional simple left R-module 

on which y acts trivially and x acts as multiplication by #. Set 

M = R Qk[x] K(1) ~ R / R . ( x  - 1). 

It  is not hard to see that  

S(M)  = {[I/(A/)]: i = 0, 1, 2 , . . .} .  

Now let P = x/~M. I t  is not hard to verify that  P contains an isomorphic copy of 

the left R-module k[x], and it follows, for all # E k, that  K(p)  is isomorphic to 

a simple R-module quotient of P.  Therefore, V ( M )  strictly contains S(M),  and 

S(M)  is not closed in the R-topology on R-space. 

4. W h e n  is t h e  R - t o p o l o g y  e q u i v a l e n t  t o  t h e  J a c o b s o n  t o p o l o g y ?  

If the R-topology and Jacobson topology coincide on R-space, then every prim- 

itive factor of R must have exactly one simple faithful module (up to isomor- 

phism). In this section we first consider partial converses to this conclusion, for 

three specific classes of rings whose primitive factors are simple artinian: Com- 

mutat ive rings, PI  rings, and FBN rings. We then show that  the R-topology is a 

strict refinement of the Jacobson topology when R is the first Weyl algebra over 

a field of characteristic zero. 

We retain the notation of the preceding sections. 

4.1. PROPOSITION: Suppose that R is a PI ring. Then the R-topology and 

Jacobson topology coincide on R-space. In particular, when R is commutative 

the Zariski topology and R-topology coincide on R-space. 
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Proof: Let X be a subset of R-space closed under the R-topology, and let 

I : ann M(X)  : A ann 
pEX 

By (2.5i), it suffices to prove that  X = v(I) .  We will assume, without loss of 

generality, that  I = 0, and we will prove that  X is equal to all of R-space. By 

Kaplansky's  Theorem, there exists a positive integer n such that  R~ a n n N  is 

isomorphic to a submodule of (~i~1 N, for all simple R-modules N. Therefore, 

R is isomorphic to a submodule of 

I ]  M ( x ) ,  
p6X i=1 " i = t  

and so every simple R-module is isomorphic to a subquotient of M(X) .  Thus 

R-space is equal to X. | 

4.2. PROPOSITION: Suppose that R is loft fully bounded left noetherian. Then 

the R-topology and Jacobson topology coincide on R-space. 

Proof: Let X be a subset of R-space closed under the R-topology. By (3.2), 

with E = nR, there exists a cyclic R-module M such that  X = S(M). By 

(2.5i), it suffices to prove that  X = v(ann M),  and we will assume without loss 

of generality that  ann M = 0. Again we must show that  X is equal to all of 

R-space. However, by Cauchon's Theorem (see, e.g., [2, 8.9]), R embeds as an 

R-module into a finite direct sum of copies of M. Hence every isomorphism class 

of simple R-modules is contained in S(M), and the proposition follows. II 

We now turn to an example where the Jacobson topology and R-topolgy are 

distinct. 

4.3. LEMMA: Assume that R is a domain with loft Iirult dimension equal to 

1. Further suppose that R has infinitely many pairwise non-isomorphic simple 

modules. Then R-space is a one-dimensional irreducible topological space. 

Proof: Let S be any infinite collection of maximal left ideals of R for which 

the simple modules R/L,  for L E S, are pairwise non-isomorphic. Because ev- 

ery proper R-module factor of R has finite length, it follows that NLcS L = O. 

Therefore, R embeds as an R-module into every direct product of infinitely many 

pairwise non-isomorphic simple R-modules. Consequently, R-space itself is the 

only infinite closed subset of R-space, and so R-space is 1-dimensional and irre- 

ducible. | 
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4.4. Example: Assume that k is a field of characteristic zero, and let R denote 

the first Weyl algebra, k{x, y}/(xy - yx - 1}. It is well-known that  R is a simple 

noetherian domain of left Krull dimension 1; see, for example, [6]. Moreover, 

R-space is infinite (cf., e.g., [5]). It now follows from (3.4) and (4.3) that R-space 

is irreducible, 1-dimensional, and noetherian. Under the Jacobson topology, the 

only closed subsets of R-space are 0 and R-space itself. 

5. Comparisons with topologies relative to A. L. Rosenberg's spectra 

In this section we assume that  the reader is somewhat familiar with the termi- 

nology and notation in [7], which we will adopt. We will also continue to use the 

notation and conventions established in the preceding sections of this note. 

5.1. Following [7, §III.1.2], A-space can be identified with a subset of Spec A (as 

defined in [7, §III.1.2]). Several topologies on Spec A are considered in [7], and we 

can therefore compare the A-topology to their induced (or, relative) topologies 

on A-space. 

5.2. The topology T [7, III.5.1] induces the discrete topology on A-space. 

5.3. The Zariski topology on Spec(ModR) [7, III.6.3] induces the Jacobson 

topology on R-space. The central topology [7, III.7.1] on Spec(Mod R) is weaker 

than this Zariski topology. 

5.4. (i) In [7, III.7.2], the topology r* on Spec A is defined by declaring the set 

of supports of finite type objects in A to be a base. (The support, in Spec A, 

of an object in A is defined in [7, III.5.2].) When A is the category of modules 

over a comnmtative ring, T* is exactly the Zariski topology on the classical prime 

spectrum. 

(ii) Let M be a finite type object in A. Then the set S(M) of ismorphism 

classes of simple subquotients of M is closed under the induced r* topology on 

A-space. However, we saw in (3.6) that S(M) need not be closed under the 

A-topology. Therefore, the A-topology and the induced r*-topology are distinct. 

(iii) Retain the notation of (3.6). For each non-negative integer n, set 

M(~) = R OkM I~(~ n) -~ R/R.(:~" - An), 

and let 

Sn = S(M(n)) = {[K(Ai)]: i = n, n + 1 . . . .  }. 

As noted in (ii), each Sn is closed under the induced T*-topo1ogy on R-space. 

However, 

So +~ $1 ~ $2 2""-  
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Hence, r* need not be a noetherian topology on R-space when R is a noetherian 

ring. 

(iv) Suppose that  A is a Grothendieck category with a generator E of finite 

type. Let X be a subset of A-space closed under the A-topology. By (3.2), 

X = S(F)  for some quotient F of E,  and F is of finite type. Therefore, X is 

closed under the induced r* topology. It  follows, in this case, that  the T* topology 

is a refinement of the A-topology. 

5.5. The topology rs  [7, III.7.3] on Spec A is defined to be the weakest topology 

in which the closure of a point in Spec A is equal to its set of specializations. 

Therefore, Ts reduces to the Zariski topology in the commutat ive case, and the 

points in A-space are closed under the induced Ts-tOpo1ogy. We do not know 

whether or not the topology induced by ~-s on A-space coincides, in general, 

with the A-topology. We also do not know whether the topology on A-space 

induced by 7:s is noetherian when A has a noetherian generator. A closely related 

question: Let M be an object in A, and filrther suppose that  M E Spec A. Must 

V ( M )  : S(M)?  
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